Thermal explosions in (Ti, Zr, Hf, Nb, Ta) carbon mixtures

Author:

Vadchenko S. G.1ORCID,Sedegov A. S.2ORCID,Kovalev I. D.1ORCID

Affiliation:

1. Merzhanov Institute of Structural Macrokinetics and Materials Science of the Russian Academy of Sciences

2. National University of Science and Technology “MISIS”

Abstract

This research focuses on investigating the ignition and thermal explosion behavior of (Ti, Zr, Hf, Nb, Ta) + 5C mixtures that have been mechanically activated. First, we mechanically activated the metal powder mixtures to produce composite particles consisting of Ti, Zr, Hf, Nb, and Ta, followed by the addition of carbon, and re-activation. An activation time of 120 min at 347 rpm resulted in the formation of solid solutions from the metals in the mixture, while large tantalum particles were preserved. The resulting mixtures were then pressed into pellets, which were heated in argon until ignition occurred. The ignition process involves multiple phases, with the first being inert heating, followed by progressive heating at t = 420÷450 °C, and a  subsequent endothermic phase transformation at 750–770 °C. The temperature then rises rapidly, resulting in a thermal explosion that forms complex carbides, leaving some unreacted tantalum behind. The (Ti, Zr, Hf, Nb, Ta)C5 activated mixtures and high entropy solid solution are unstable and  release titanium and zirconium carbides when heated above 1300 °C, causing changes to the composition of the (Ti, Zr, Hf, Nb, Ta)C5 final product. When diluted by adding 25 and 50 % of the final product, the effective activation energy Ea for the (Ti, Zr, Hf, Nb, Ta) + 5C reaction in the 1100–1580 °C temperature range was found to be 34 kJ/mol.

Publisher

National University of Science and Technology MISiS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3