SHS of cast materials in the Mo-Al-C system

Author:

Gorshkov V. A.1ORCID,Miloserdov P. A.1ORCID,Kovalev D. Yu.1ORCID,Boyarchenko O. D.1ORCID

Affiliation:

1. Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences

Abstract

Materials based on molybdenum-aluminium-carbon compounds have a considerable potential for use under intense wear conditions at elevated temperatures. This paper presents the experimental results of self-propagating high-temperature synthesis of compounds within the Mo-Al-C system. By combining two processes: SHS of the elements and SHS-metallurgy, cast materials containing the Mo3Al2C, Mo2C, Mo3Al, and Mo3Al8 phases were obtained. The experiments used mixtures with compositions calculated according to the ratio (1 - α)(3MoO3-8Al-C)/α(3Mo-2Al-C), where a varied in the range from 0 to 1. The synthesis was carried out in a laboratory reactor of 3 L volume at an initial argon pressure of 5 MPa. The mass of the initial mixtures in all experiments was 20 g. The process of combustion was initiated by a 0.5 mm diameter molybdenum wire spiral by applying 28 V voltage to it. The resulting end products were studied by X-ray diffraction and local microstructural analysis. A significant influence of the ratio of the initial reagents on the synthesis parameters, phase composition, and microstructure of the target products was established. Introduction into the high-exothermic mixture 3MoO3-8Al-C inert “cold” mixture 3Mo-2Al-C leads to an increase in the content of carbide phases in the ingots. The possibility of obtaining cast materials based on the triple phase Mo3Al2C, the maximum content of which is 87 wt. % at the content of the “cold” mixture in the charge α = 0.4 is shown. The presence of secondary phases of molybdenum carbide (Mo2C) and molybdenum aluminides (Mo3Al8 , Mo3Al) in the final products is due to a change in the composition of the initial mixture caused by the ejection of components during combustion and insufficient existence time of the melt formed in the combustion wave.

Publisher

National University of Science and Technology MISiS

Subject

Metals and Alloys,Surfaces, Coatings and Films,Materials Science (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3