Effect of the structure and morphology of Ni-based porous deposits on their electrocatalytic activity towards hydrogen evolution reaction

Author:

Trofimova T. S.1,Darintseva A. B.1,Ostanina T. N.1,Rudoi V. M.1,Il’ina I. E.1

Affiliation:

1. Ural Federal University (UrFU)

Abstract

Porous nickel and nickel-cobalt alloy deposits were obtained by electrodeposition on a dynamic hydrogen bubble template. Deposition was carried out from chloride electrolytes in a galvanostatic mode at a current density of 0.3 A/cm2. The porosity of the obtained deposits is associated with the macro- and micropores. It was found that the nickel and nickel-cobalt alloy deposits feature by different porous layer structures. In case of nickel, a typical foam structure is formed, while the Ni–Co alloy deposit morphology is more like loose (powder) metals. The total porosity of the obtained structures calculated based on experimental data decreased with the deposit thickness: from 0.4 to 0.1 for nickel foams, and from 0.9 to 0.8 for the Ni–Co deposit. It was shown that the dependences of the macropore number and the fraction of the surface occupied by them can be approximated by lognormal distribution. The agreement between the experimental values and values calculated by approximating equations indicates the stochastic nature of the macropore system formation. The catalytic properties of the obtained porous deposits toward the hydrogen evolution reaction in alkali were investigated. It was found that the decrease in the hydrogen evolution potential in comparison with a smooth electrode reaches 370 mV for nickel foams, and 440 mV for porous Ni–Co alloy deposits. However, the high porosity of the Ni–Co alloy caused poor adhesion of the deposit to the substrate; therefore, the porous Ni–Co deposit cannot be used without further strengthening. The dependences of the depolarization value during hydrogen evolution on the average diameter of pores, their number, and the macropore fraction were analyzed. Optimal properties of foams that reduce the potential of hydrogen evolution in alkali are as follows: pore diameters from 30 to 50 μm and their quantity from 50 to 100 pcs/mm2.

Publisher

National University of Science and Technology MISiS

Subject

Metals and Alloys,Surfaces, Coatings and Films,Materials Science (miscellaneous),Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3