The main scientific and technical problems of using hybrid HPC clusters in materials science

Author:

Volovich K. I.1,Denisov S. A.1

Affiliation:

1. Federal Research Centre “Information and Control” of the Russian Academy of Sciences, 44 Vavilov Str., Moscow 119333, Russia

Abstract

The article discusses the use of hybrid HPC clusters for the execution of software designed to calculate the electronic structure and atomic scale materials modeling. Modern software systems, which are designed to solve the problems of materials science, use the capabilities of various hardware computing accelerators to increase productivity. The use of such computing technologies requires the adaptation of application program code to hybrid computing architectures, which include classic central processing units (CPUs) and specialized graphics accelerators (GPUs).The use of large computing hybrid systems requires the development of methods for ensuring the workloading of such computing systems that will allow efficient use of computing resources and avoid equipment downtime.First of all, these methods should allow parallel execution of user applications using computational accelerators. However, in practice, software environments designed to solve application problems cannot be deployed in the same computing environment due to software incompatibility. In order to overcome this limitation and ensure the parallel execution of diverse types of materials science tasks, the creation of individual task execution environments based on virtualization technologies and cloud technologies.The continuation of virtualization technologies and the provision of cloud services is the construction of digital platforms. The article proposes the use of a digital platform for hosting scientific materials science services that provide calculations using various application software systems. Digital platforms make it possible to provide a unified user interface to scientific materials science services. The platform provides opportunities for finding the necessary scientific services, transferring source data and results between users, the platform and hybrid high-performance clusters.

Publisher

National University of Science and Technology MISiS

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experience of FRC CSC RAS in providing high-performance computing cloud services for materials science problems;Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering;2021-02-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3