Activation processes during operation of an Ag/SnSe/Ge2Se3/W ion memristor with a self-forming current-conducting channel

Author:

Aleshin A. N.1,Ruban O. A.2

Affiliation:

1. Institute of Ultra High Frequency Semiconductor Electronics of the Russian Academy of Sciences

2. Institute of Ultra High Frequency Semiconductor Electronics of the Russian Academy of Sciences; MIREA – Russian Technological University

Abstract

In an Ag/SnSe/Ge2Se3/W ionic type memristor, the activation energy of two main processes responsible for its operation has been determined, namely: the activation energy for the formation of a conductive channel and the activation energy for memristor degradation. By measuring the current-voltage characteristics, the electrical conductivity of the memristor in low- and high-resistance operating modes was assessed. To determine the activation energy, the Arrhenius law and the provisions of the thermodynamics of irreversible processes were used, in particular the second postulate of Onsager, according to which the growth rate of the irreversible part of the entropy of a system tending to equilibrium is proportional to the sum of the products of the flows occurring in the system and the generalized thermodynamic force corresponding to each flow. The equilibrium state of the memristor was taken to be the state in which the memristor lost the ability to function as a resistive memory cell. The flow of Ag+ ions – electromigration was used as a substance flow. For the first process, the activation energy was 0.24 eV, and for the second, 1.16 eV. The different values of activation energy reflect the difference between the agglomeration mechanism of formation of a current-conducting channel, typical of an Ag/SnSe/Ge2Se3/W memristor, and the “standard” mechanism of substance transfer based on a group of point defects, which accompanies the process of memristor degradation.

Publisher

National University of Science and Technology MISiS

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3