Protein folding quantum circuit quantum circuit for bio material modelling compression

Author:

Lisnchenko M. O.1ORCID,Protasov S. I.1ORCID

Affiliation:

1. Innopolis University

Abstract

Computational material science aims to simulate substances to understand their physical properties. Bioelectronics is an interdisciplinary field that studies biological material from the conductivity point of view. In case of proteins, the folding is an important feature that directly influences physical and chemical properties. The folding modelling is a hard task. The enormous number of degrees of freedom makes modelling impossible for classical computation due to resource limits. Quantum computations aim to process multidimensional data with logarithmic growth of quantum bits. Quantum operators (gates) form quantum programs, known as circuits that process the input data. In real quantum computers, the gates are noisy and expensive to execute. Thus, it is essential to reduce the number of quantum gates both for the quality of the result and the cost of computations. This work describes an approach to decrease the number of quantum gates based on their mathematical property. The matrix properties form the first optimization technique. In this case, the optimized quantum circuit predicts precisely the same protein folding as the not optimized circuit predicts. This happens because both of the circuits are mathematically equivalent. The removal of weakly-parametrized gates forms the second optimization technique. In such case the optimized quantum circuit calculates the approximate protein folding. The error depends on parameter’s amplitude of the gates. The first technique allows to decrease the circuit depth from 631 to 629 gates while modelling the part of Azurin peptide. The second technique allows to decrease the depth to 314 gates with the threshold parameter value 0.4 radians.

Publisher

National University of Science and Technology MISiS

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3