Growing indium antimonide single crystals with a diameter of 100 mm by the modified Chochralsky method

Author:

Kozlov R. Yu.1,Kormilitsina S. S.1ORCID,Molodtsova E. V.1ORCID,Zhuravlev E. O.1

Affiliation:

1. Federal State Research and Develpment Institute of Rare Metal Industry (“Giredmet” JSC)

Abstract

At present, all over the world there is a tendency to increase the diameters of single crystals of both elementary semiconductors and semiconductor compounds. There are reports indicating the use of single crystals of III-V semiconductors with a diameter of four to six inches. So far, indium antimonide single crystals up to 75 mm in diameter have been obtained in Russia.Indium antimonide is the element base of the broadest field of solid-state electronics — optoelectronics. On its basis, linear and matrix photodetectors are manufactured, operating in the spectral wavelength range of 3-5 microns, which are used as a viewing element in thermal imaging systems.In this work, we selected the thermal growth conditions and obtained indium antimonide single crystals 100 mm in diameter in the crystallographic direction [100]. The solution of this problem has made it possible to significantly increase the yield of suitable photodetectors.Single crystals 100 mm in diameter were grown by the Czochralski method in a two-stage process. The design of the graphite heating unit was enlarged and matched to a working crucible with a diameter of 150 millimeters and a load of 4.5-5 kg.The Van der Pauw method was used to measure the electrical properties of the obtained single crystals, which corresponded to the standard parameters of undoped indium antimonide. Using an optical microscope, the etching pits were counted using the 9-field method. The dislocation density in crystals with a diameter of 100 mm was ≤ 100 cm-2 and corresponded to the values ​for crystals of 50 mm.

Publisher

National University of Science and Technology MISiS

Subject

General Medicine

Reference20 articles.

1. Weiss E. Thirty years of HgCdTe technology in Israel. SPIE Proc.: Infrared Technology and Applications XXXV, 2009; 7298: 72982W. https://doi.org/10.1117/12.818237

2. Gershon G., Albo A., Eylon M., Cohen O., Calahorra Z., Brumer M., Nitzani M., Avnon E., Aghion I., Kogan I., Ilan E., Tuito A., Ben Ezra M., Shkedy L. Large format InSb infrared detector with 10 μm pixels. Proc. OPTRO. Paris; 2014.

3. Burlakov I.D., Boltar K.O., Mirofyanchenko A.E., Vlasov P.V., Lopukhin A.A., Pryanikova E.V., Solov’ev A.N., Semenov A.N., Mel’tser B.Ya., Komissarova T.A., L’vova T.V., Ivanov S.V. Investigation of InSb structures grown by molecular beam epitaxy. Uspekhi prikladnoi fiziki. 2015; 3(6): 559—565. (In Russ.)

4. Sukhanov M.A., Bakarov A.K., Protasov D.Yu., Zhuravlev K. S. AlInSb/InSb heterostructures for IR photodetectors grown by molecular-beam epitaxy. Tech. Phys. Lett. 2020; 46: 154—157. https://doi.org/10.1134/S1063785020020285

5. Alfimova D.L., Lunina M.L., Lunin L.S., Pashchenko O.S., Pashchenko A.S., Yatsenko A.N. Bismuth effect on structural perfection of AlGaInSbBi elastic-strained epitaxial layers grown on InSb substrates. Poverkhnost’. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya. 2020; 8: 20—25. (In Russ.). https://doi.org/10.31857/S1028096020080038

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3