Synthesis, structure and electromagnetic properties of FeCoCu/C nanocomposites

Author:

Muratov D. G.1ORCID,Kozhitov L. V.2ORCID,Zaporotskova I. V.3ORCID,Popkova A. V.4ORCID,Tarala V. A.5ORCID,Korovin E. Yu.6ORCID,Zorin A. V.2

Affiliation:

1. A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences; National University of Science and Technology “MISIS”

2. National University of Science and Technology “MISIS”

3. Volgograd State University

4. JSC “Research Institute NPO “LUCH”

5. North Caucasian Federal University

6. Tomsk State University

Abstract

FeCoCu ternary nanoparticles distributed and stabilized in the carbon matrix of FeCoCu/C metal-carbon nanocomposites have been synthesized using controlled IR pyrolysis of precursors consisting of the “polymer / iron acetylacetate / cobalt and copper acetates” type system obtained by joint dissolution of components followed by solvent removal. The effect of the synthesis temperature on the structure, composition and electromagnetic properties of the nanocomposites has been studied. By XRD was shown that the formation of the FeCoCu ternary nanoparticles occurs due to the interaction of Fe3С with the nanoparticles of the CoCu solid solution. An increase in the synthesis temperature leads to an increase in the size of the metal nanoparticles due to their agglomeration and coalescence as a result of matrix reconstruction. Furthermore, ternary alloy nanoparticles having a variable composition may form depending on the synthesis temperature and the content ratio of the metals. Raman spectroscopy has shown that the crystallinity of the carbon matrix of the nanocomposites increases with the synthesis temperature. The frequency responses of the relative permittivity and permeability of the nanocomposites have been studied at 3–13 GHz. It has been shown that a change in the content ratio of the metals noticeably increases both the dielectric and the magnetic losses. The former loss is caused by the formation of a complex nanostructure of the nanocomposite carbon matrix while the latter one originates from an increase in the size of the nanoparticles and a shift of the natural ferromagnetic resonance frequency to the low-frequency region. The reflection loss has been calculated using a standard method from the experimental data on the frequency responses of the relative permittivity and permeability. It has been shown that the frequency range and the absorption of electromagnetic waves (from –20 to –52 dB) can be controlled by varying the content ratio of the metals in the precursor. The nanocomposites obtained as a result of the experiment deliver better results in comparison with FeCo/C nanocomposites synthesized under similar conditions.

Publisher

National University of Science and Technology MISiS

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3