Thermal characterization of ABS-Graphene blended three dimensional printed functional prototypes for electro chemical energy storage
-
Published:2018-02-27
Issue:1
Volume:1
Page:1-11
-
ISSN:2631-8350
-
Container-title:International Journal of Computational Physics Series
-
language:
-
Short-container-title:Int. J. Comput. Phys. Ser.
Author:
Boparai Kamaljit Singh,Singh Rupinder
Abstract
This study highlights the thermal characterization of ABS-Graphene blended three dimensional (3D) printed functional prototypes by fused deposition modeling (FDM) process. These functional prototypes have some applications as electro-chemical energy storage devices (EESD). Initially, the suitability of ABS-Graphene composite material for FDM applications has been examined by melt flow index (MFI) test. After establishing MFI, the feedstock filament for FDM has been prepared by an extrusion process. The fabricated filament has been used for printing 3D functional prototypes for printing of in-house EESD. The differential scanning calorimeter (DSC) analysis was conducted to understand the effect on glass transition temperature with the inclusion of Graphene (Gr) particles. It has been observed that the reinforced Gr particles act as a thermal reservoir (sink) and enhances its thermal/electrical conductivity. Also, FT-IR spectra realized the structural changes with the inclusion of Gr in ABS matrix. The results are supported by scanning electron microscopy (SEM) based micrographs for understanding the morphological changes.
Publisher
Natural Science Simulations and Engineering Laboratory
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献