Abstract
The massive collection of personal data by personalization systems has rendered the preservation of privacy of individuals more and more difficult. Most of the proposed approaches to preserve privacy in personalization systems usually address this issue uniformly across users, thus ignoring the fact that users have different privacy attitudes and expectations (even among their own personal data). In this paper, we propose to account for this non-uniformity of privacy expectations by introducing the concept of heterogeneous differential privacy. This notion captures both the variation of privacy expectations among users as well as across different pieces of information related to the same user. We also describe an explicit mechanism achieving heterogeneous differential privacy, which is a modification of the Laplacian mechanism by Dwork, McSherry, Nissim and Smith. In a nutshell, this mechanism achieves heterogeneous differential privacy by manipulating the sensitivity of the function using a linear transformation on the input domain. Finally, we evaluate on real datasets the impact of the proposed mechanism with respect to a semantic clustering task. The results of our experiments demonstrate that heterogeneous differential privacy can account for different privacy attitudes while sustaining a good level of utility as measured by the recall for the semantic clustering task.
Publisher
Journal of Privacy and Confidentiality
Subject
Computer Science Applications,Statistics and Probability,Computer Science (miscellaneous)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Scenario-based Adaptations of Differential Privacy: A Technical Survey;ACM Computing Surveys;2024-04-26
2. A Security-Oriented Overview of Federated Learning Utilizing Layered Reference Model;IEEE Access;2024
3. Item-Oriented Personalized LDP for Discrete Distribution Estimation;Lecture Notes in Computer Science;2024
4. Improving Accuracy of Interactive Queries in Personalized Differential Privacy;Communications in Computer and Information Science;2024
5. Differentially Private Federated Learning with Heterogeneous Group Privacy;2023 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics);2023-12-17