Heterogeneous Differential Privacy

Author:

Alaggan MohammadORCID,Gambs Sébastien,Kermarrec Anne-Marie

Abstract

The massive collection of personal data by personalization systems has rendered the preservation of privacy of individuals more and more difficult. Most of the proposed approaches to preserve privacy in personalization systems usually address this issue uniformly across users, thus ignoring the fact that users have different privacy attitudes and expectations (even among their own personal data). In this paper, we propose to account for this non-uniformity of privacy expectations by introducing the concept of heterogeneous differential privacy. This notion captures both the variation of privacy expectations among users as well as across different pieces of information related to the same user. We also describe an explicit mechanism achieving heterogeneous differential privacy,  which is a modification of the Laplacian mechanism by Dwork, McSherry, Nissim and Smith. In a nutshell, this mechanism achieves heterogeneous differential privacy by manipulating the sensitivity of the function using a linear transformation on the input domain. Finally, we evaluate on real datasets the impact of the proposed  mechanism with respect to a semantic clustering task. The results of our experiments demonstrate that heterogeneous differential privacy can account for different privacy attitudes while sustaining a good level of utility as measured by the recall for the semantic clustering task.

Publisher

Journal of Privacy and Confidentiality

Subject

Computer Science Applications,Statistics and Probability,Computer Science (miscellaneous)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Scenario-based Adaptations of Differential Privacy: A Technical Survey;ACM Computing Surveys;2024-04-26

2. A Security-Oriented Overview of Federated Learning Utilizing Layered Reference Model;IEEE Access;2024

3. Item-Oriented Personalized LDP for Discrete Distribution Estimation;Lecture Notes in Computer Science;2024

4. Improving Accuracy of Interactive Queries in Personalized Differential Privacy;Communications in Computer and Information Science;2024

5. Differentially Private Federated Learning with Heterogeneous Group Privacy;2023 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics);2023-12-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3