Author:
Avent Brendan,Korolova Aleksandra,Zeber David,Hovden Torgeir,Livshits Benjamin
Abstract
We propose a hybrid model of differential privacy that considers a combination of regular and opt-in users who desire the differential privacy guarantees of the local privacy model and the trusted curator model, respectively. We demonstrate that within this model, it is possible to design a new type of blended algorithm that improves the utility of obtained data, while providing users with their desired privacy guarantees.
We apply this algorithm to the task of privately computing the head of the search log and show that the blended approach provides significant improvements in the utility of the data compared to related work.
Specifically, on two large search click data sets, comprising 1.75 and 16 GB, respectively, our approach attains NDCG values exceeding 95% across a range of privacy budget values.
Publisher
Journal of Privacy and Confidentiality
Subject
Computer Science Applications,Statistics and Probability,Computer Science (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献