Abstract
Agencies seeking to disseminate public use microdata, i.e., data on individual records, can replace confidential values with multiple draws from statistical models estimated with the collected data. We present a famework for evaluating disclosure risks inherent in releasing multiply-imputed, synthetic data. The basic idea is to mimic an intruder who computes posterior distributions of confidential values given the released synthetic data and prior knowledge. We illustrate the methodology with artificial fully synthetic data and with partial synthesis of the Survey of Youth in Custody.
Funder
National Science Foundation
Publisher
Journal of Privacy and Confidentiality
Subject
Computer Science Applications,Statistics and Probability,Computer Science (miscellaneous)
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献