On the Privacy and Utility Properties of Triple Matrix-Masking

Author:

Ding Aidong Adam,Miao Guanhong,Wu Samuel Shangwu

Abstract

Privacy protection is an important requirement in many statistical studies. A recently proposed data collection method, triple matrix-masking, retains exact summary statistics without exposing the raw data at any point in the process. In this paper, we provide theoretical formulation and proofs showing that a modified version of the procedure is strong collection obfuscating: no party in the data collection process is able to gain knowledge of the individual level data, even with some partially masked data information in addition to the publicly published data. This provides a theoretical foundation for the usage of such a procedure to collect masked data that allows exact statistical inference for linear models, while preserving a well-defined notion of privacy protection for each individual participant in the study. This paper fits into a line of work tackling the problem of how to create useful synthetic data without having a trustworthy data aggregator. We achieve this by splitting the trust between two parties, the ``"masking service provider" and the ``"data collector."

Funder

National Institutes of Health

Publisher

Journal of Privacy and Confidentiality

Subject

Computer Science Applications,Statistics and Probability,Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Securing Anomaly Detection for Process-Based Time Series;Nuclear Science and Engineering;2024-07-15

2. Training Medical-Diagnosis Neural Networks on the Cloud with Privacy-Sensitive Patient Data from Multiple Clients;Proceedings of the 2022 Fourteenth International Conference on Contemporary Computing;2022-08-04

3. Evaluation of Noise Distributions for Additive and Multiplicative Smart Meter Data Obfuscation;IEEE Access;2022

4. On Outsourcing Artificial Neural Network Learning of Privacy-Sensitive Medical Data to the Cloud;2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI);2021-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3