Learning in a Large Function Space: Privacy-Preserving Mechanisms for SVM Learning

Author:

Rubinstein Benjamin I. P.ORCID,Bartlett Peter L.,Huang Ling,Taft Nina

Abstract

The ubiquitous need for analyzing privacy-sensitive information—including health records, personal communications, product ratings and social network data—is driving significant interest in privacy-preserving data analysis across several research communities. This paper explores the release of Support Vector Machine (SVM) classifiers while preserving the privacy of training data. The SVM is a popular machine learning method that maps data to a high-dimensional feature space before learning a linear decision boundary. We present efficient mechanisms for finite-dimensional feature mappings and for (potentially infinite-dimensional) mappings with translation-invariant kernels. In the latter case, our mechanism borrows a technique from large-scale learning to learn in a finite-dimensional feature space whose inner-product uniformly approximates the desired feature space inner-product (the desired kernel) with high probability. Differential privacy is established using algorithmic stability, a property used in learning theory to bound generalization error. Utility—when the private classifier is pointwise close to the non-private classifier with high probability—is proven using smoothness of regularized empirical risk minimization with respect to small perturbations to the feature mapping. Finally we conclude with lower bounds on the differential privacy of any mechanism approximating the SVM.

Publisher

Journal of Privacy and Confidentiality

Subject

Computer Science Applications,Statistics and Probability,Computer Science (miscellaneous)

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3