Differential Privacy Applications to Bayesian and Linear Mixed Model Estimation

Author:

Abowd John M.ORCID,Schneider Matthew J.,Vilhuber LarsORCID

Abstract

We consider a particular maximum likelihood estimator (MLE) and a computationally intensive Bayesian method for differentially private estimation of the linear mixed-effects model (LMM) with normal random errors. The LMM is important because it is used in small-area estimation and detailed industry tabulations that present significant challenges for confidentiality protection of the underlying data. The differentially private MLE performs well compared to the regular MLE, and deteriorates as the protection increases for a problem in which the small-area variation is at the county level. More dimensions of random effects are needed to adequately represent the time dimension of the data, and for these cases the differentially private MLE cannot be computed. The direct Bayesian approach for the same model uses an informative, reasonably diffuse prior to compute the posterior predictive distribution for the random effects. The empirical differential privacy of this approach is estimated by direct computation of the relevant odds ratios after deleting influential observations according to various criteria.

Funder

National Science Foundation

Publisher

Journal of Privacy and Confidentiality

Subject

Computer Science Applications,Statistics and Probability,Computer Science (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Ensemble Teacher-Student Learning Approach with Poisson Sub-sampling to Differential Privacy Preserving Speech Recognition;2022 13th International Symposium on Chinese Spoken Language Processing (ISCSLP);2022-12-11

2. Generating Higher-Fidelity Synthetic Datasets with Privacy Guarantees;Algorithms;2022-07-01

3. Background Knowledge (B);Guide to Differential Privacy Modifications;2022

4. Scope and Related Work;Guide to Differential Privacy Modifications;2022

5. Comparative Study of Differentially Private Data Synthesis Methods;Statistical Science;2020-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3