Privacy-Preserving Data Sharing for Genome-Wide Association Studies

Author:

Uhler CarolineORCID,Slavkovic Aleksandra B.,Fienberg Stephen E.ORCID

Abstract

Traditional statistical methods for confidentiality protection of statistical databases do not scale well to deal with GWAS databases especially in terms of guarantees regarding protection from linkage to external information. The more recent concept of differential privacy, introduced by the cryptographic community, is an approach which provides a rigorous definition of privacy with meaningful privacy guarantees in the presence of arbitrary external information, although the guarantees may come at a serious price in terms of data utility. Building on such notions, we propose new methods to release aggregate GWAS data without compromising an individual’s privacy. We present methods for releasing differentially private minor allele frequencies, chi-square statistics and p-values. We compare these approaches on simulated data and on a GWAS study of canine hair length involving 685 dogs. We also propose a privacy-preserving method for finding genome-wide associations based on a differentially-private approach to penalized logistic regression.

Funder

National Science Foundation

National Center for Research Resources

National Center for Advancing Translational Sciences

Publisher

Journal of Privacy and Confidentiality

Subject

Computer Science Applications,Statistics and Probability,Computer Science (miscellaneous)

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Highly private large‐sample tests for contingency tables;Stat;2024-01

2. Differentially private inference via noisy optimization;The Annals of Statistics;2023-10-01

3. Canonical noise distributions and private hypothesis tests;The Annals of Statistics;2023-04-01

4. KGP Meter: Communicating Kin Genomic Privacy to the Masses;2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P);2022-06

5. DyPS: Dynamic, Private and Secure GWAS;Proceedings on Privacy Enhancing Technologies;2021-01-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3