Brain tumor classification model using convolutional neural networks on magnetic resonance imaging

Author:

Leal Líliam Barroso,Lima Francisco das Chagas Alves,Rabêlo Ricardo de Andrade Lira,Moraes Marcelo Jânio Araújo

Abstract

Accurate classification of brain tumor images is an important challenge in the field of healthcare, demanding fast and reliable diagnoses for proper treatment. In this article, we propose a model that enhances for the automated classification of brain tumor images brain tumor classification, aiming to support diagnostics, increase confidence, and reduce time in the classification process of meningioma, glioma, and pituitary tumors, in magnetic resonance imaging (MRI) scans. Our results demonstrated that the VGG16 model achieved the best classification results among the three evaluated models. Its deep architecture and learning capacity allowed it to learn more discriminative representations of brain tumors, resulting in a higher accuracy rate. Furthermore, the results of the VGG16 implementation were compared to previous studies representing the state of the art in the field. This comparison highlighted the effectiveness and relevance of the VGG16 model for this classification problem. These results offer valuable insights for future development of automated brain tumor detection systems.

Publisher

South Florida Publishing LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3