CoronaNet: A Novel Deep Learning Model for COVID-19 Detection in CT Scans

Author:

Bhansali Rohan,Kumar Rahul,Writer Duke

Abstract

Coronavirus disease (COVID-19) is currently the cause of a global pandemic that is affecting millions of people around the world. Inadequate testing resources have resulted in several people going undiagnosed and consequently untreated; however, using computerized tomography (CT) scans for diagnosis is an alternative to bypass this limitation. Unfortunately, CT scan analysis is time-consuming and labor intensive and rendering is generally infeasible in most diagnosis situations. In order to alleviate this problem, previous studies have utilized multiple deep learning techniques to analyze biomedical images such as CT scans. Specifically, convolutional neural networks (CNNs) have been shown to provide medical diagnosis with a high degree of accuracy. A common issue in the training of CNNs for biomedical applications is the requirement of large datasets. In this paper, we propose the use of affine transformations to artificially magnify the size of our dataset. Additionally, we propose the use of the Laplace filter to increase feature detection in CT scan analysis. We then feed the preprocessed images to a novel deep CNN structure: CoronaNet. We find that the use of the Laplace filter significantly increases the performance of CoronaNet across all metrics. Additionally, we find that affine transformations successfully magnify the dataset without resulting in high degrees of overfitting. Specifically, we achieved an accuracy of 92% and an F1 of 0.8735. Our novel research describes the potential of the Laplace filter to significantly increase deep CNN performance in biomedical applications such as COVID-19 diagnosis.

Publisher

rScroll

Subject

General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Herding in policy responses to coronavirus disease 2019;Science and Public Policy;2023-06-17

2. Selective Kernel Networks for Lung Abnormality Diagnosis Using Chest X-rays;Lecture Notes in Networks and Systems;2023

3. Application of Machine Learning and Deep Learning Techniques for COVID-19 Screening Using Radiological Imaging: A Comprehensive Review;SN Computer Science;2022-11-24

4. An approach for forecasting workload in data center for cloud computing using ANN based PSO;1ST SAMARRA INTERNATIONAL CONFERENCE FOR PURE AND APPLIED SCIENCES (SICPS2021): SICPS2021;2022

5. Diagnosis of COVID-19 in CT images based on convolutional neural network (CNN);1ST SAMARRA INTERNATIONAL CONFERENCE FOR PURE AND APPLIED SCIENCES (SICPS2021): SICPS2021;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3