ConCollA - A Smart Emotion-based Music Recommendation System for Drivers

Author:

Patel JignaORCID,Padaria Ali Asgar,Mehta Aryan,Chokshi Aaryan,Patel Jitali Dineshkumar,Kapdi RupalORCID

Abstract

Music recommender system is an area of information retrieval system that suggests customized music recommendations to users based on their previous preferences and experiences with music. While existing systems often overlook the emotional state of the driver, we propose a hybrid music recommendation system - ConCollA to provide a personalized experience based on user emotions. By incorporating facial expression recognition, ConCollA accurately identifies the driver’s emotions using convolution neural network(CNN) model and suggests music tailored to their emotional state. ConCollA combines collaborative filtering, a novel content-based recommendation system named Mood Adjusted Average Similarity (MAAS), and apriori algorithm to generate personalized music recommendations. The performance of ConCollA is assessed using various evaluation parameters. The results show that proposed emotion-aware model outperforms a collaborative-based recommender system.

Publisher

Scalable Computing: Practice and Experience

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3