Author:
Thakkar Riddhi Sanjaykumar,Thakkar Dhyan,Bhavsar Madhuri
Abstract
Cloud computing offers various services to its users, ranging from infrastructure, and system development environment, to software as a service over the internet. Having such promising services available over the internet consistently, it has become an ever-demanding facility. As a reliable services provider, a cloud service provider (CSP) needs to deliver its services seamlessly to users and is also required to optimally utilize the resources. Optimal resource utilization eliminates over and under-provisioning and improves the availability of cloud services. Therefore, it is a great need to have a model allowing CSP to systematize its resources to cater to customers' demands. Such a model should be computationally light and quick enough to produce effective results. In this work, a simple yet effective neural network-based resource prediction model named MVMS is proposed, which enables a CSP to predict the customer's resource demand in advance. The results show that compared to GRU, the proposed Multi-Variate Multi-Step (MVMS) model predicts the resources accurately. Thus, CSP can schedule the resources precisely and process real-time requests of users. Experiments on the bitbrains dataset indicate that the proposed MVMS resource prediction model is quick and accurate, with lower RMSE and MAE values.
Publisher
Scalable Computing: Practice and Experience
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Anomaly Detection-Based Multilevel Ensemble Learning for CPU Prediction in Cloud Data Centers;2024 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE);2024-08-06
2. A Multilevel Learning Model for Predicting CPU Utilization in Cloud Data Centers;2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2023-11-14