Estimation of Traffic Matrix from Links Load using Genetic Algorithm

Author:

Pachuau Joseph L,Roy Arnab,Krishna Gopal,Saha Anish Kumar

Abstract

Traffic Matrix (TM) is a representation of all traffic flows in a network. It is helpful for traffic engineering and network management. It contains the traffic measurement for all parts of a network and thus for larger network it is difficult to measure precisely. Link load are easily obtainable but they fail to provide a complete TM representation. Also link load and TM relationship forms an under-determined system with infinite set of solutions. One of the well known traffic models Gravity model provides a rough estimation of the TM. We have proposed a Genetic algorithm (GA) based optimization method to further the solutions of the Gravity model. The Gravity model is applied as an initial solution and then GA model is applied taking the link load-TM relationship as a objective function. Results shows improvement over Gravity model.

Publisher

Scalable Computing: Practice and Experience

Subject

General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generative Deep Learning Techniques for Traffic Matrix Estimation From Link Load Measurements;IEEE Open Journal of the Communications Society;2024

2. Traffic Matrix Estimation Techniques- A Survey on Current Practices;2023 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS);2023-03-23

3. An AI-Augmented Kalman Filter Approach to Monitoring Network Traffic Matrix;IEEE Transactions on Network Science and Engineering;2023

4. A New End-To-End Network Traffic Reconstruction Approach Based on Different Time Granularities;Simulation Tools and Techniques;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3