A Class Specific Feature Selection Method for Improving the Performance of Text Classification

Author:

V Venkatesh,S B Sharan,S Mahalaxmy,S Monisha,D S Ashick Sanjey,P Ashokkumar

Abstract

Recently, a significant amount of research work has been carried out in the field of feature selection. Although these methods help to increase the accuracy of the machine learning classification, the selected subset of features considers all the classes and may not select recommendable features for a particular class. The main goal of our paper is to propose a new class-specific feature selection algorithm that is capable of selecting an appropriate subset of features for each class. In this regard, we first perform class binarization and then select the best features for each class. During the feature selection process, we deal with class imbalance problems and redundancy elimination. The Weighted Average Voting Ensemble method is used for the final classification. Finally, we carry out experiments to compare our proposed feature selection approach with the existing popular feature selection methods. The results prove that our feature selection method outperforms the existing methods with an accuracy of more than 37%.

Publisher

Scalable Computing: Practice and Experience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3