Method for Identifying Motor Vehicle Traffic Violations Based on Improved YOLOv Network

Author:

Hao Zhengjun

Abstract

The use of traditional manual supervision means to deal with motor vehicle traffic safety violations can result in a large amount of wasted manpower and oversight problems. To assist road managers in better directing traffic order and managing traffic situations, the study proposes an improved target tracking network model. Simple online real-time tracking, deep correlation metrics, and cascading open-source computer vision libraries are combined to create a tracking model for motor vehicle traffic infraction recognition. Pursuant to the experimental findings, the Institute’s upgraded target recognition network model had accuracy and recall rates of 95.7% and 99.7%, respectively, with an accuracy rate of 16.6% higher than the model’s historical counterpart. The recognition accuracy of the constructed motor vehicle traffic violation recognition and tracking model regarding the three basic traffic violations was 98.2%, 98.7%, and 97.9%, respectively; the missed detection rate was 2.0%, 0.31%, and 2.1%, respectively; and the false detection rate was 0.17%, 0.31%, and 0%, respectively. It shows that the improved network model of the study is advanced and the motor vehicle traffic offence model has a good recognition rate and stable performance, which can assist traffic managers in their operations to a certain extent.

Publisher

Scalable Computing: Practice and Experience

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3