Text Summarization for Online and Blended Learning

Author:

Kirmani Mahira,Kaur Gagandeep

Abstract

Online learning text summarization is vital for managing the constant influx of online information. It involves condensing lengthy online content into concise summaries while retaining the original meaning and information. While several online summarization tools are available, they often fall short in preserving the underlying semantics of the text. In this paper, we introduce an innovative approach to online text summarization that strongly emphasizes capturing and preserving the semantics of the text. Our automatic summarizer leverages distributional semantic models to extract and incorporate semantics, producing high-quality online summaries. To evaluate the effectiveness of our online summarization system, we conducted experiments on a diverse range of online content. We employed ROUGE metrics, a popular evaluation method for text summarization, to assess our system's performance. Additionally, we compared our results with those of four state-of-the-art online summarizers. The outcome of our study demonstrates that our online summarization approach, which integrates semantics as a fundamental feature, outperforms other reference summarizers. This conclusion underscores the significance of leveraging semantics in the context of online learning text summarization. Furthermore, our system's ability to reduce redundancies in online content makes it a valuable tool for managing information overload in the digital age.

Publisher

Scalable Computing: Practice and Experience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3