Privacy and Security Enhancement of Smart Cities using Hybrid Deep Learning-enabled Blockchain

Author:

Awotunde Joseph Bamidele,Gaber Tarek,Prasad L V Narasimha,Folorunso Sakinat Oluwabukonla,Lalitha Vuyyuru Lakshmi

Abstract

The emergence of the Internet of Things (IoT) accelerated the implementation of various smart city applications and initiatives. The rapid adoption of IoT-powered smart cities is faced by a number of security and privacy challenges that hindered their application in areas such as critical infrastructure. One of the most crucial elements of any smart city is safety. Without the right safeguards, bad actors can quickly exploit weak systems to access networks or sensitive data. Security issues are a big worry for smart cities in addition to safety issues. Smart cities become easy targets for attackers attempting to steal data or disrupt services if they are not adequately protected against cyberthreats like malware or distributed denial-of-service (DDoS) attacks. Therefore, in order to safeguard their systems from potential threats, businesses must employ strong security protocols including encryption, authentication, and access control measures. In order to ensure that their network traffic remains secure, organizations should implement powerful network firewalls and intrusion detection systems (IDS). This article proposes a blockchain-supported hybrid Convolutional Neural Network (CNN) with Kernel Principal Component Analysis (KPCA) to provide privacy and security for smart city users and systems. Blockchain is used to provide trust, and CNN enabled with KPCA is used for classifying threats. The proposed solution comprises three steps, preprocessing, feature selection, and classification. The standard features of the datasets used are converted to a numeric format during the preprocessing stage, and the result is sent to KPCA for feature extraction. Feature extraction reduces the dimensionality of relevant features before it passes the resulting dataset to the CNN to classify and detect malicious activities. Two prominent datasets namely ToN-IoT and BoT-IoT were used to measure the performance of this anticipated method compared to its best rivals in the literature. Experimental evaluation results show an improved performance in terms of threat prediction accuracy, and hence, increased security, privacy, and maintainability of IoT-enabled smart cities.

Publisher

Scalable Computing: Practice and Experience

Subject

General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3