Research on the Application of Speech Database based on Emotional Feature Extraction in International Chinese Education and Teaching

Author:

Zhang Xiangli

Abstract

The advanced analysis of the relationship between acoustic and emotional characteristics of speech signals can effectively improve the interactivity and intelligence of computers. Given the current status of speech recognition and the problems encountered in international Chinese education, the study proposes to extract emotional characteristics to achieve speech construction of the database. Based on considering the emotional characteristics of speech, a hybrid algorithm based on spectral sequence context features is proposed. The DBN-BP algorithm is used to process emotional data of different dimensions, and a speech database is constructed. After testing and analyzing the algorithm model, it is found that the dynamic recognition accuracy of the DBN-BP model fused with emotional features is over 90%, and the negative emotion recognition rates in the three databases are all above 60%. At the same time, the accuracy rate of the model in the algorithm comparison experiment remains above 85%, the data information extraction is relatively complete, and the average test time of less than 1s is less than 3%. The speech database based on multi-emotional feature extraction can effectively provide a new reference for the improvement of the quality of Chinese international education and the improvement of the speech recognition system.

Publisher

Scalable Computing: Practice and Experience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3