Scalable Computing Infrastructure for Online and Blended Learning Environments

Author:

Xin Liao

Abstract

With the growing popularity of online learning and blended learning, as well as the rapid development of cloud computing and big data technology, scalable computing infrastructure has become an indispensable part of building a modern education platform. Method: Five experiments were conducted to test the scalability and reliability of computing infrastructure based on online and blended learning environments. The experiments include the performance comparison of online learning platforms based on different virtualization technologies, the performance comparison of online and hybrid learning environments under different loads, the comparison of online learning experiences under different bandwidth constraints, the system stability test under different user numbers, and the comparison of access speeds in different regions. Result: The experimental results showed that on an online learning platform using the KVM (Kernel-based Virtual Machine) interface, when the number of concurrent users is 99, the response time is 100.9ms, and the CPU (Central Processing Unit) utilization rate is 60.9%. Under low load conditions, the concurrent access volume is 200; the response time is 50ms, and the throughput is 10.3. When accessing locally, the latency is 9.19ms; the download speed is 500.3KB/s; the network throughput is 399.8KB/s. Conclusion: Exploring the scalability, reliability, performance, stability, and access speed of online learning platforms is crucial for improving platform competitiveness and ensuring user experience.

Publisher

Scalable Computing: Practice and Experience

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3