Application of Deep Learning Algorithm in Optimization of Engineering Intelligent Management Control

Author:

Zhou Shuai,Guo Jing

Abstract

Currently, there are a series of problems in the management of the construction industry, such as resource waste, substandard quality, and low construction efficiency. In response to this phenomenon, the author proposes a multi-objective optimization control method for construction engineering management projects using deep learning algorithms. This method analyzes the relationship between cost, duration, and quality, and constructs an optimization management model for these three factors. At the same time, the improved SULSTM neural network algorithm is used to optimize the model parameters. The experimental results indicate that, when the value coefficient is 0.2211, the total investment cost and quality coefficient are 412700 yuan and 0.99496 yuan, respectively. When the value coefficient is 0.1976, the total cost and quality coefficient are 456300 yuan and 0.98798 yuan, respectively. When the value coefficient is 0.1990, the total cost and quality coefficient are 456300 yuan and 0.99496 yuan, respectively. Proved that the SUSTM neural network algorithm has faster convergence speed and lower loss values compared to the improved LSTM neural network algorithm. The cost of improving quality has a greater impact on the quality coefficient than the duration, and the total investment cost has a greater impact on the value coefficient than the quality coefficient.

Publisher

Scalable Computing: Practice and Experience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3