Machine Learning Based Technique to Learn Hippocampal Atrophy from Axial MRI for Alzheimer's Disease Diagnosis

Author:

Ramkumar D. K.,Balaji N. V.,Genish T.

Abstract

Hippocampus (HC) is one of the small brain components and its features majorly take part in diagnosing diseases such as Alzheimer and Dementia. The earlier detection of the size changes of HC leads to take preventive action against Alzheimer disease at initial stage. Thus the HC voxel quantification becomes essential to know the severity of the disease and thus induces computerized segmentation process. Several semi-automatic and automatic HC segmentation techniques proposed earlier. Though, it requires large memory space and high computational cost. This paper reduces the risk of searching a high configuration machine and reduces the cost by utilizing limited number of features. It is to be done by using some strategic features based on mathematical framework of wavelet, statistical features and gray level computations called level set. The features fed as input to the supervised machine learning model called back propagation neural network. A deep study conducted to train the net and analyzed in various views. The results were compared with the similar existing models which were using Random forest, Quicknat and deep learning. The proposed machine learning model produces the higher and similar dice scores of existing model. The validation of the proposed method yields 85% of dice score and 96% of sensitivity and 96% of specificity.

Publisher

Scalable Computing: Practice and Experience

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3