Sustainable Development in Medical Applications Using Neural Network Architecture

Author:

Jiang Shuyi

Abstract

The purpose of this research is to propose a methodology utilizing machine learning techniques to support medical organizations in effectively managing risks. Specifically, the study aims to connect social media data to identify and assess potential threats, ultimately enabling healthcare management to make informed decisions for their organizations and clients. The research employs machine learning algorithms to analyze user-generated content on social media platforms, generating comprehensive visual representations of various risk categories and their magnitudes. Additionally, the study utilizes data simplification techniques, including categorization, to streamline data processing and enhance overall efficiency. A computational framework is also developed, incorporating closed-form connections for threat assessment and evaluation. The study further empirically analyses the Consumer Value Stores (CVS) established for medical care in the United States. The findings reveal that prevalent threats within the lower quartile of client messages about CVS services include operational, financial, and technological risks. The severity of these risks is distributed among high risk (21.8%), moderate risk (78%), and minimal risk (0.2%). The research also presents several metrics to demonstrate the robustness of the proposed framework, confirming its effectiveness in effectively identifying and addressing potential threats. This research provides insights that can help healthcare management make informed decisions and foster a safer and more secure environment for their organizations and the people they serve.

Publisher

Scalable Computing: Practice and Experience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3