Optimal Usage of Resources through Quality Aware Scheduling in Containers based Cloud Computing Environment

Author:

S.A. Poojitha,K Ravindranath

Abstract

For cloud computing, the Quality Aware Scheduling of Containers (QASC) model has been proposed for delay-sensitive tasks. Plan your cloud tasks. Typically, time constraints are met while resources are used effectively. It's a really difficult undertaking. In order to distribute containers more effectively, QASC takes into account a number of performance factors. Containers and their make-span logs, as well as input quality metrics like I/O-intensive workload, startup time, hot standby failure rate, and inter-container dependencies, are collected by the QASC model. A metric coefficient that indicates each container's overall rating is calculated by normalizing and averaging these values to determine it. In order to determine how well scheduling performed, the model also includes a quality coefficient that calculates this metric-coefficient threshold. It's also critical for QASC to be able to determine the remaining energy in each container, which represents its request capacity. In order to optimize cloud resources, energy use is also taken into account by the model. From the cloud-sim simulation, an experimental dataset including 50 containers and 1,200 internet protocol-capable users was employed. For the make-span ratio, round-trip time, and energy consumption analysis, this produced 20,000 data points. The RLSched, DSTS, and ADATSA models were contrasted with the QASC model. The outcomes showed that QASC performed better than these models in a number of crucial areas. Tasks may be managed better with the higher average make-span ratio and lower volatility. Its superior job scheduling and resource use were further demonstrated by its shorter round-trip durations and lower energy usage across loads. The QASC model is an extremely complex scheduling method for container-based systems and a significant advancement in cloud computing research. Its approaches and methods enable for more intelligent energy use as well as high-quality services while also improving system performance, particularly for tasks that are delay-sensitive.  

Publisher

Scalable Computing: Practice and Experience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3