Improving Semantic Analysis in Visualization with Meta Network Representation and Parsing Algorithm

Author:

Ji Chunmei,Liu Ning,Wang Zansen,Zhen Yaping

Abstract

This article aims to advance semantic analysis models, particularly in visualization, by proposing a novel semantic representation method utilizing the semantic Meta Network (MNet). MNet is a complex framework comprising semantic elements, internal and external relationships, and feature attributes, defined hierarchically through recursive processes, aiming to depict the comprehensive semantic space from phrase-level components to complete texts. The methodology involves the development of a general construction algorithm for MNet, encompassing meta relationships, tree structures, and network structures, and a Parsing method for specific semantic analysis problems, including a bottom-up specification-based MNet semantic dependency tree construction algorithm and a network construction algorithm tailored for natural language interface parsing. Empirical experiments confirm the effectiveness of these algorithms, particularly in parsing natural language control interface instructions in Supervisory Control and Data Acquisition (SCADA) systems, bridging specific semantic analysis problems with the general construction and parsing processes of MNet, accounting for internal semantics concerning language unit structures and foreign language meanings in the linguistic context, thereby contributing significantly to the field of natural language semantic analysis.

Publisher

Scalable Computing: Practice and Experience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3