Multi-class Brain Tumor Classification and Segmentation using Hybrid Deep Learning Network Model

Author:

Kumar Parasa Rishi,Bonthu Kavya,Meghana Boyapati,Vani Koneru Suvarna,Chakrabarti Prasun

Abstract

Brain tumor classification is a significant task for evaluating tumors and selecting the type of treatment as per their classes. Brain tumors are diagnosed using multiple imaging techniques. However, MRI is frequently utilized since it provides greater image quality and uses non-ionizing radiation. Deep learning (DL) is a subfield of machine learning and recently displayed impressive performance, particularly in segmentation and classifying problems. Based on convolutional neural network (CNN), a Hybrid Deep Learning Network (HDLN) model is proposed in this research for classifying multiple types of brain tumors including glioma, meningioma, and pituitary tumors. The Mask RCNN is used for brain tumor classification. We used a squeeze-and-excitation residual network (SE-ResNet) for brain tumor segmentation, which is a residual network (ResNet) with a squeeze-and-excitation block. A publicly available research dataset is used for testing the proposed model for experiment analysis and it obtained an overall accuracy of 98.53%, 98.64% sensitivity and 98.91% specificity. In comparison to the most advanced classification models, the proposed model obtained the best accuracy. For multi-class brain tumor diseases, the proposed HDLN model demonstrated its superiority to the existing approaches.

Publisher

Scalable Computing: Practice and Experience

Subject

General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3