An Efficient Cooperative Routing with ML based Energy Efficiency Model for Distributed Underwater WSN Electricity Meter Warning System

Author:

Shi Zhengang,Tao Peng ,Linhao Zhang ,Bo Gao ,Hongxi Wang

Abstract

Underwater wireless sensor network that operates underwater, typically in oceans, lakes, and rivers. UWSNs are composed of a large number of small sensor nodes that are equipped with various sensing and communication capabilities. These nodes are deployed in the underwater environment to collect and transmit data, which can be used for a variety of applications such as environmental monitoring, oceanography, and marine biology. The Underwater WSN (UWSN) consists of sensor nodes to sense the data and transmit it to the sink node. These sensor nodes (SN) are equipped with limited batteries, which is the central issue. Therefore, the routing protocols were developed for researchers to save energy. However, the increment of network lifetime remains an open challenge. Forwarding the data to the nearest SN to the sink will reduce the network reliability and stability, draining SN's energy early. To overcome these issues, this paper focused on developing an efficient Cooperative based routing (CR) with a machine learning (ML) model to improve the network's lifetime. The cooperative routing discovers the route path from the sender to the destination. The best possible way from the sender to the receiver has been selected using the ML approach called the Self-organizing network (SON). By identifying congestion-free multi-hop transmission using CRSON, the data packet is transmitted from sender to receiver with reduced energy, increasing the network's lifetime and reliability. This model is simulated and experimented with energy efficiency, packet delivery, loss rate, latency, and throughput metrics.

Publisher

Scalable Computing: Practice and Experience

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3