Fault Tolerant Load Balancing with Quadruple Osmotic Hybrid Classifier and Whale Optimization for Cloud Computing

Author:

Anuradha Soundararajan,Kanmani P.

Abstract

Cloud Computing (CC) environment is developing as a recently discovered caliber for computing applications over the network. Fault tolerance is one of the foremost issues in CC environment. Since the negligence in resource have a profound effect on job execution, throughput, response time and performance of the entire network. In this work, in order to address the issue, Quadruple Osmotic Hybrid Classification and Whale Optimization (QOHC-WO) is introduced to fault-tolerance under the requirement of different user request tasks. Initially, Quadruple Fault Tolerance Level is applied to allocate the fault tolerance level. Followed by, Hybrid Vector Classifier is used to categorize the user request tasks (task) and cloud server nodes (node). Then, the Osmotic function is employed for performing the migration among virtual machines with lesser response time. This helps to solve the maximum level of fault issue. Finally, Improved Whale Optimization Algorithm is applied to find the optimal allocation of tasks with the corresponding node. In addition, the Bandit function and Whale optimization are used to address the trade-off between exploitation and exploration. Experimental setup of the proposed QOHC-WO method and existing methods are carried out with different factors such as task response time, the number of VM migrations, and percentage of fault detected rate with respect to a number of tasks. The analyzed results validate that the proposed QOHC-WO method achieves a higher fault detection rate with minimum response time as well as task migration than the state-of-the-art methods.

Publisher

Scalable Computing: Practice and Experience

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3