Dynamic Task Scheduling using Balanced VM Allocation Policy for Fog Computing Platforms

Author:

Singh Simar Preet,Nayyar Anand,Kaur Harpreet,Singla Ashu

Abstract

The fog computing models are getting popular as the demand and capacity of data processing is rising for the various applications every year. The fog computing models incorporate the various task scheduling algorithms for the resource selection among the given list of virtual machines (VMs). The task scheduling models are designed around the various task metrics, which include the task length (time), energy, processing cost etc. for the various purposes. The cost oriented scheduling models are primarily built for the customer's perspectives, and saves them a handful amount of money by efficiently assigning the resources for the tasks. In this paper, we have worked upon the multiple task scheduling models based upon the Local Regression (LR), Inter Quartile Range (IQR), Local Regression Robust (LRR), Non-Power Aware (NPA), Median Absolute Deviation (MAD), Dynamic Voltage and Frequency Scheduling (DVFS) and The Static Threshold (THR) methods using the ifogsim simulation designed with the 50 nodes and 50 virtual machines, i.e. 1 virtual machine per node. All of the models have been implemented using the standard input simulation parameters for the purpose of performance assessment in the various domains, specifically in the time domain and effective consumption of energy. The results obtained from the experiments have shown the overall time of 86,400 seconds during the simulation, where the DVFS has been recorded with the 52.98 kWh consumption of energy, which shows the efficient processing in comparison to the 150.68 kWh of energy consumption in the NPA model. Also, there are no SLA violations recorded during both of the simulation, because no VM migration model has been utilized among both of the implemented models, which clearly shows that the VM migrations are the major cause of SLA violation cases. The LRR (2520 VMs) has been observed as best contender on the basis of mean of number of VM migrations in comparison with LR (2555 VMs), THR (4769 VMs), MAD (5138 VMs) and IQR (5352 VMs).

Publisher

Scalable Computing: Practice and Experience

Subject

General Computer Science

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3