Evaluating the Igraph Community Detection Algorithms on Different Real Networks

Author:

Oza Parita Rajiv,Agrawal Smita,Ravaliya Dhruv,Kakkar Riya

Abstract

Complex networks are an essential tool in machine learning and data mining. The underlying information can help understand the system and reveal new information. Community is sub-groups in networks that are densely connected. This community can help us reveal a lot of information. The community detection problem is a method to find communities in the network. The igraph library is used by many researchers due to the utilization of various community detection algorithms implemented in both Python and R language. The algorithms are implemented using various methods showing various performance results. We have evaluated the community detection algorithm and ranked it based on its performance in different scenarios and various performance metrics. The results show that the Multi-level, Leiden community detection algorithm, and Walk trap got the highest performance compared to spin glass and leading eigenvector algorithms. The findings based on these algorithms help researchers to choose algorithms from the igraph library according to their requirements.  

Publisher

Scalable Computing: Practice and Experience

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3