Bird Swarm Optimization-based Stacked Autoencoder Deep Learning for Umpire Detection and Classification

Author:

Nandyal Suvarna,Kattimani Suvarna Laxmikant

Abstract

One of the most watched and a played sport is cricket, especially in South Asian countries. In cricket, umpire has the power for making significant decisions about events in the field. With the growing increase of the utilization of technology in sports, this paper presents the umpire detection and classification by proposing an optimization algorithm. The overall procedure of the proposed approach involves three steps, like segmentation, feature extraction, and the classification. At first, the video frames are extracted from input cricket video, and the segmentation is performed based on Viola-Jones algorithm. Once the segmentation is done, the feature extraction is carried out using Histogram of Oriented Gradients (HOG), and Fuzzy Local Gradient Patterns (Fuzzy LGP). Finally, the extracted features are given to the classification step. Here, the classification is done using the proposed Bird Swarm Optimization-based stacked auto encoder deep learning classifier (BSO-Stacked Autoencoders), that categories into umpire or others. The performance of the umpire detection and classification based on BSO-Stacked Autoencoders is evaluated based on sensitivity, specificity, and accuracy. The proposed BSO-Stacked Autoencoder method achieves the maximal accuracy of 96.562%, the maximal sensitivity of 91.884%, and the maximal specificity of 99%, that indicates its superiority.

Publisher

Scalable Computing: Practice and Experience

Subject

General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3