First study on the effect of transforming growth factor beta 1 and insulin-like growth factor 1 on the chondrogenesis of elephant articular chondrocytes in a scaffold-based 3D culture model

Author:

Tangyuenyong Siriwan1ORCID,Kongdang Patiwat2ORCID,Sirikaew Nutnicha3ORCID,Ongchai Siriwan4ORCID

Affiliation:

1. Equine Clinic, Department of Companion Animal and Wildlife Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.

2. Center of Multidisciplinary Technology for Advanced Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.

3. Musculoskeletal Science and Translational Research Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.

4. Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand.

Abstract

Background and Aim: Osteoarthritis (OA) is recognized as a degenerative joint disease that leads to chronic pain and low quality of life in animals. Captive elephants, the largest land mammals with a long lifespan, are more prone to develop OA due to restricted spaces and insufficient physical activity. This study aimed to investigate the effect of transforming growth factor-β1 (TGF-β1) and insulin-like growth factor 1 (IGF-1) on elephant chondrogenesis in a scaffold culture of articular chondrocytes. Materials and Methods: Elephant chondrocytes-seeded gelatin scaffolds were cultured in chondrogenic media with or without 10 ng/mL of TGF-β1 or IGF-1 alone or 5–10 ng/mL of their combination for up to 21 days. The mRNA expression of cartilage-specific anabolic genes, ACAN and COL2A1, was analyzed using a real-time reverse transcription-polymerase chain reaction. The amounts of sulfated glycosaminoglycans (sGAGs) in conditioned media and contents in cultured scaffolds were determined through dimethylmethylene blue assay. Cell morphology, accumulation of proteoglycans, and details of the cultured scaffolds were determined using hematoxylin-eosin staining, safranin O staining, and scanning electron microscopy (SEM), respectively. Results: TGF-β1 alone significantly upregulated ACAN gene expression but not COL2A1, while IGF-1 alone did not enhance both ACAN and COL2A1 genes. The combination significantly upregulated both mRNA expression levels of ACAN and COL2A1 gene at day 14. The sGAGs accumulation and contents in the treatment groups, except IGF-1 tended to be higher than the controls, concomitantly with the production of the extracellular matrix, showed the formation of a cartilage-like tissue through histological and SEM analyses. Conclusion: Together, our results suggest that the single treatment of TGF-β1 has a selective effect on ACAN gene, while the combined growth factors seem to be an advantage on elephant chondrogenesis. This three-dimensional culture model is probably helpful for developing cartilage regeneration in vitro and is further applied in tissue engineering for OA treatment in vivo.

Funder

Thailand Research Fund

Publisher

Veterinary World

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3