Therapeutic effect of biosynthetic gold nanoparticles on multidrug-resistant Escherichia coli and Salmonella species isolated from ruminants

Author:

Abdalhamed Abeer M.1ORCID,Ghazy Alaa A.1ORCID,Ibrahim Eman S.2ORCID,Arafa Amany A.2ORCID,Zeedan Gamil S. G.1ORCID

Affiliation:

1. Department of Parasitology and Animal Diseases, National Research Centre, Dokki, Egypt.

2. Department of Microbiology and Immunology, National Research Centre, Dokki, Egypt.

Abstract

Background and Aim: Multidrug-resistant (MDR) pathogenic microorganisms have become a global problem in ruminants as a result of the intensive use of antibiotics, causing the development of resistance among gut microbiota. The antibiotic-resistant microorganisms can be transferred from diseased animals to humans. This study aimed to determine the prevalence of MDR Escherichia coli and Salmonella spp. isolated from cattle, buffaloes, sheep, and goats suffering from respiratory signs, diarrhea, and mastitis and to screen the antibiotic sensitivity of selected isolated bacteria. It also detected antibiotic-resistance genes by polymerase chain reaction (PCR), produced green gold nanoparticles (AuNPs) using plant extracts (Artemisia herba-alba and Morus alba), and evaluated the antimicrobial activities of these biosynthesized nanoparticles on selected pathogens (E. coli and Salmonella spp.). Materials and Methods: MDR E. coli and Salmonella spp. were investigated using fecal samples (n=408), nasal swabs (n=358), and milk samples (n=227) of cattle, buffaloes, sheep, and goats with or without clinical signs, including respiratory manifestations, pneumonia, diarrhea, and mastitis, from different governorates in Egypt. E. coli and Salmonella spp. were isolated and identified on selective media, which were confirmed by biochemical reactions and PCR. Antimicrobial susceptibility testing against 10 commonly used antibiotics was performed using the Kirby-Bauer disk diffusion method. Antibiotic resistance genes blaTEM, blaSHV, blaOXA, and blaCTX-M were detected by PCR. The antibacterial effect of the biosynthesized AuNPs was evaluated by MIC and well diffusion assay. The biosynthesized AuNPs were also characterized by ultraviolet-visible spectrophotometry and transmission electron microscopy (TEM). Results: Among all fecal samples, the prevalence of E. coli was 18.4% (183/993) and that of Salmonella spp. was 16.7% (66/408), as determined by cultural and molecular tests. All isolates of E. coli and Salmonella spp. were 100% resistant to ampicillin (AM) and amoxicillin and highly resistant to cefoxitin and AM-sulbactam. The total rate of resistance genes in E. coli was 61.2% (112/183), while that in Salmonella was 63.6% (42/66) for pathogens isolated from ruminants with respiratory manifestations, pneumonia, diarrhea, and mastitis. Among the resistance genes, blaTEM had the highest prevalence rate in E. coli (25.9%, 21/81) while blaSHV had the lowest (9.8%, 8/81) in fecal swabs. AuNPs were successfully synthesized using aqueous leaf extract of A. herba-alba and M. alba as bioreducing agents. TEM analysis showed particle size of 10-42 nm for A. herba-alba and M. alba AuNPs. The biosynthesized AuNPs showed antibacterial activity against MDR E. coli and Salmonella spp. Conclusion: Rapid and accurate diagnostic methods are the cornerstone for effective treatment to reduce the risk of antimicrobial-resistant pathogenic microorganisms. This is particularly important for overcoming the increasing rate of MDR in ruminants with respiratory manifestations, pneumonia, diarrhea, and mastitis. This can be complemented by the development of AuNPs synthesized in an environmentally friendly manner AuNPs using natural plant extracts for the treatment of antibiotic-resistant microorganisms.

Funder

National Research Centre

Publisher

Veterinary World

Subject

General Veterinary

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3