The effect of bile salt diet supplementation on genes related to fat metabolism in yellow-feathered broilers

Author:

Zhang Zhenming1ORCID,Ding Baoan1ORCID,He Hailian1ORCID,Wang Jingge1ORCID,Liu Xiongjie1ORCID,Guo Jiahui1ORCID,Li Pengxiang1ORCID,Madigosky Stephen R.2ORCID

Affiliation:

1. Department of Animal Science, College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China.

2. Department of Environmental Science and Biology, One University Place, Widener University, Chester, Pennsylvania 19013, USA.

Abstract

Background and Aim: As a new feed additive, bile acid (BA) can promote the absorption and transport of lipids and fat-soluble vitamins. In recent years, BAs have been widely used in animal feed to promote fat absorption. Therefore, this study aimed to investigate the effect of bile salt supplementation in the diet of yellow-feathered broilers on messenger RNA (mRNA) expression of sterol regulatory element-binding protein 1 (SREBF1), fatty acid synthase (FAS), acetyl-coenzyme A carboxylase (ACC), and fatty acid transport protein 4 (FATP4). Materials and Methods: Four hundred and twenty commercial male chicks were randomly divided into seven groups (with four replicates per group and 15 chickens per replicate). They were fed diets supplemented with bile salts at 0, 1.5, 2.5, 3.5, 4.5, 5.5 mg/kg, and 2 mg/kg tylosin for 30 days. Changes in SREBF1, fatty acid transporter 4, FAS, and acetyl- CoA carboxylase genes in intestinal mucosa and liver of yellow-feathered broilers were determined using a quantitative fluorescence polymerase chain reaction. Results: mRNA expression of SREBF1, FAS, ACC, and FATP4 in the small intestine decreased in chicks fed diets supplemented with 3.5 and 4.5 mg/kg bile salts (p<0.05) compared with the control group on 7 days and 14 d. The mRNA expressions of SREBF1, FAS, ACC, and FATP4 in liver tissue decreased in chicks fed diets supplemented with 4.5 and 5.5 mg/kg bile salts (p<0.05) compared to the control group on 7 days. The mRNA expression of SREBF1, FAS, ACC, and FATP4 in the liver at 14 days and the small intestine on 21 days also decreased in chicks fed diets supplemented with 4.5 mg/kg bile salts (p<0.05) compared to the control group. When contrasted with the control group on day 21, the mRNA expression of SRWBF1, FAS, ACC, and FATP4 detected in the liver was lower in chicks fed diets supplemented with bile salts (p<0.05). Conclusion: The dietary supplementation of bile salts at 4.5 mg/kg effectively regulates the expression of fat metabolism genes, such as SREBF1, FAS, ACC, and FATP4 mRNA. At this concentration, bile salts promote fat catabolism, inhibit fat synthesis, and play an essential role in improving the fat deposition of broilers.

Funder

Qinghai Provincial Department of Science and Technology

National Natural Science Foundation of China

Publisher

Veterinary World

Subject

General Veterinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chronic Heat Stress Affects Bile Acid Profile and Gut Microbiota in Broilers;International Journal of Molecular Sciences;2023-06-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3