Prediction of daily milk production from the linear body and udder morphometry in Holstein Friesian dairy cows

Author:

Soeharsono Soeharsono1,Mulyati Sri2,Utama Suzanita2,Wurlina Wurlina2,Srianto Pudji2,Restiadi Tjuk Imam2,Mustofa Imam2ORCID

Affiliation:

1. Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Unair, Jl. Mulyorejo, Surabaya-60115, Indonesia.

2. Department of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Unair, Jl. Mulyorejo, Surabaya-60115, Indonesia.

Abstract

Aim: This study aimed to develop equations to predict daily milk production (DMP) based on linear body and udder morphometry of Holstein Friesian (HF) dairy cows. Materials and Methods: The experiment was conducted on 174 lactating HF dairy cows reared by farmers at different locations under similar conditions. The age, parity, and body condition score of experimental animals were limited to 0.25 of the standard deviation value above or below the average. The average DMP was based on farmers' records. Morphometry components, i.e., body length (BL); chest circumference (CC); front udder height (FUH), rear udder height (RUH); and udder circumference (UC) were directly measured using a tape; meanwhile, body weight (BW) was estimated using the Indonesia Winter formula. The relationship variables of morphometry components (body and udder morphometry) and BW on DMP were analyzed by regression. Results: The result showed no correlation (p>0.05) between CC and BW on DMP. Meanwhile, DMP obtained linear regression (p<0.05) with the mathematical equation: 1.30+0.11*BL; 13.90+0.41*FUH; 11.02+0.18*RUH; and 3.87+0.16*UC. Conclusion: This study shows that the DMP of dairy cows could be predicted based on their BL and udder morphometry.

Funder

Kementerian Riset Teknologi Dan Pendidikan Tinggi Republik Indonesia

Publisher

Veterinary World

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3