Association of heat-shock protein 70.1 gene with physiological and physical performance of Bali cattle

Author:

Suhendro Ikhsan1ORCID,Noor Ronny Rachman2ORCID,Jakaria Jakaria2ORCID,Priyanto Rudy2ORCID,Manalu Wasmen3ORCID,Andersson Göran4ORCID

Affiliation:

1. Department of Animal Production and Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia; Department of Animal Science, Tulang Bawang University, Bandar Lampung 35121, Indonesia.

2. Department of Animal Production and Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia.

3. Department of Anatomy, Physiology, and Pharmacology, School of Veterinary Medicine and Biomedical Science, IPB University, Bogor 16680, Indonesia.

4. Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden.

Abstract

Background and Aim: Global warming challenges cattle productivity and welfare since it affects heat stress and scarce feed. The heat-shock protein 70 (HSP70) gene is essential in cytoprotection against stressors, protecting cells from dysregulated gene expression and apoptosis. This study aimed to identify significant genetic markers of the HSP70.1 gene that can be leveraged genetically to enhance thermotolerance and production in Bali cattle further. Materials and Methods: Animals were sampled from three different rearing systems. In this study, 83 healthy adult male Bali cattle without abnormalities were utilized. Single-nucleotide polymorphism (SNP) diversity associated with the physiological and physical traits of Bali cattle was assessed using SNPStat online software. Gene expression for putative SNPs and their genotypic groups was further evaluated. Results: There were 15 polymorphic SNPs (c.-185G>A, c.-69T>G, c.10G>C, c.19A>G, c.45C>T, c.101INS, c.115T>C, c.130T>C, c.136G>T, c.159G>C, c.164G>T, c.234G>A, c.303G>A, c.333C>A, and c.456C>T) identified, of which 12 were associated with the assessed trait. Nine SNPs were associated with physiological traits, while eight were with physical traits. The c.136G>T as a novel, high minor allele frequency, and associative SNP was selected for HSP70 gene expression. Individuals with the TT genotype have a trim physique, susceptible physiology, and high HSP70 mRNA expression. On the other hand, the GG genotype was significantly associated with larger physique, lower physiology, and low HSP70 mRNA expression. The higher expression may indicate that HSP70.1 is involved in mitigating the deleterious effects of stress. As a result, the animal experienced negative energy balance, decreasing body size. Conclusion: Single-nucleotide polymorphism c.136G>T is a candidate biomarker for heat resistance traits in Bali cattle. Keywords: Bali cattle, gene expression, heat stress, HSP70, polymorphism, single-nucleotide polymorphism.

Funder

Institut Pertanian Bogor

Publisher

Veterinary World

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3