In silico simulation of hyperoside, isoquercetin, quercetin, and quercitrin as potential antivirals against the pNP868R protein of African swine fever virus

Author:

Pandarangga Putri1ORCID,Simarmata Yohanes T. R. M. R.1ORCID,Liu Adi Berci Handayani2ORCID,Haryati Dwi Ari Fitri2ORCID

Affiliation:

1. Department of Clinic, Reproduction, Pathology, and Nutrition, Faculty of Medicine and Veterinary Medicine, Universitas Nusa Cendana, Kupang, 85001, Indonesia.

2. Department of Chemistry, Faculty of Math and Science, Gajah Mada University, Yogyakarta, 55281, Indonesia.

Abstract

Background and Aim: African swine fever (ASF) causes disease in pigs with up to 100% mortality rates. There is no effective vaccine to protect against it. This study aimed to perform in silico docking of ASF virus (ASFV) pNP868R protein with potential flavonoid ligands to identify ligands that interfere with mRNA cap formation. Materials and Methods: The ASFV pNP868R protein was tested with hyperoside, isoquercetin, quercetin, and quercitrin in this in silico simulation. ASFV pNP868R protein was extracted from the Research Collaboration for Structural Bioinformatics P rotein Data Bank (RCSB PDB) database with PDB ID 7D8U (https://www.rcsb.org/structure/7D8U). Standard ligands were separated from proteins using UCSF Chimera 1.13. The standard ligand was redocked to protein using AutoDockTools 1.5.6 with the AutoDock4 method for validation. In the docking process, the grid box size was 40 × 40 × 40 Å3 with x, y, and z coordinates of 16.433, −43.826, and −9.496, respectively. The molecular docking process of the proposed ligand–protein complex can proceed if the standard ligand position is not significantly different from its original position in the viral protein’s pocket. The root mean square deviation (RMSD), root mean square fluctuation (RMSF), and radius of gyration (RoG) of the hyperoside with the lowest energy binding need to be analyzed with molecular dynamics using Groningen machine for chemical simulation 5.1.1. Results: Molecular docking and dynamic simulation revealed that hyperoside had the most stable and compact binding to the pNP868R protein. Hyperoside binds to the protein at the minimum energy of −9.07 KJ/mol. The RMSD, RMSF, and RoG values of 0.281 nm, 0.2 nm, and 2.175 nm, respectively, indicate the stability and compactness of this binding. Conclusion: Hyperoside is the most likely antiviral candidate to bind to the pNP868R protein in silico. Therefore, it is necessary to test whether this flavonoid can inhibit mRNA capping in vitro and elicit the host immune response against uncapped viral mRNA. Keywords: hyperoside, isoquercetin, molecular docking, pNP868R, quercetin, quercitrin.

Funder

Universitas Nusa Cendana

Publisher

Veterinary World

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3