Medical prospects of cryptosporidiosis in vivo control using biofabricated nanoparticles loaded with Cinnamomum camphora extracts by Ulva fasciata

Author:

Allam Nesreen Allam Tantawy1ORCID,Hamouda Ragaa Abd El-Fatah2ORCID,Sedky Doaa1ORCID,Abdelsalam Mahinour Ezzeldin3ORCID,El-Gawad Mona Ebrahim Hussien Abd4ORCID,Hassan Noha Mahmoud Fahmy1ORCID,Aboelsoued Dina1ORCID,Elmaaty Amal M. Abou5ORCID,Ibrahim Muhammad A.4ORCID,Taie Hanan Anwar Aly6ORCID,Hakim Ashraf Samir7ORCID,Desouky Hassan Mohamed5ORCID,Megeed Kadria Nasr Abdel1ORCID,Abdel-Hamid Marwa Salah2ORCID

Affiliation:

1. Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, 33 El Buhouth Street, Dokki, P.O. Box: 12622, Giza, Cairo, Egypt.

2. Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, 5th Zone, Sadat City, Munofia, Egypt.

3. Department of General Biology, Center of Basic Sciences, Misr University for Science and Technology, Al Motamayez District, 6th of October, Giza, Cairo, Egypt.

4. Cytogenetics and Animal Cell Culture Lab., National Gene Bank, Agriculture Research Center, 9 Gamaa Street, Giza, Cairo, Egypt.

5. Department of Animal Reproduction and Artificial Insemination, Veterinary Research Institute, National Research Centre, 33 El Buhouth Street, Dokki, P.O. Box: 12622, Giza, Cairo, Egypt.

6. Department of Plant Biochemistry, Agriculture and Biological Researches Institute, National Research Centre, 33 El-Bohouth St. (Former El-Tahrir St.), Dokki, P.O. 12622, Giza, Cairo, Egypt.

7. Department of Microbiology and Immunology, Veterinary Research Institute, National Research Centre, 33 El Buhouth Street, Dokki, P.O. Box: 12622, Giza, Cairo, Egypt.

Abstract

Background and Aim: Global efforts are continuing to develop preparations against cryptosporidiosis. This study aimed to investigate the efficacy of biosynthesized Ulva fasciata loading Cinnamomum camphora oil extract on new zinc oxide nanoparticles (ZnONPs shorten to ZnNPs) and silver nanoparticles (AgNPs) as alternative treatments for Cryptosporidium parvum experimental infection in rats. Materials and Methods: Oil extract was characterized by gas chromatography-mass spectrometry, loaded by U. fasciata on ionic-based ZnO and NPs, and then characterized by transmission electron microscopy, scanning electron microscopy, and X-ray diffraction. Biosafety and toxicity were investigated by skin tests. A total of 105 C. parvum oocysts/rat were used (n = 81, 2–3 W, 80–120 g, 9 male rats/group). Oocysts shedding was counted for 21 d. Doses of each preparation in addition to reference drug were administered daily for 7 d, starting on post-infection (PI) day (3). Nitazoxanide (100 mg) was used as the reference drug. After 3 weeks, the rats were sacrificed for postmortem examination and histopathological examination. Two blood samples/rat/group were collected on the 21st day. Ethylenediaminetetraacetic acid blood samples were also used for analysis of biochemistry, hematology, immunology, micronucleus prevalence, and chromosomal abnormalities. Results: C. camphora leaves yielded 28.5 ± 0.3 g/kg oil and 20 phycocompounds were identified. Spherical and rod-shaped particles were detected at 10.47–30.98 nm and 18.83–38.39 nm, respectively. ZnNPs showed the earliest anti-cryptosporidiosis effect during 7–17 d PI. Other hematological, biochemical, immunological, histological, and genotoxicity parameters were significantly fruitful; hence, normalized pathological changes induced by infestation were observed in the NPs treatments groups against the infestation-free and Nitazoxanide treated group. Conclusion: C. camphora, U. fasciata, ZnNPs, and AgNPs have refluxed the pathological effects of infection as well as positively improved host physiological condition by its anticryptosporidial immunostimulant regenerative effects with sufficient ecofriendly properties to be proposed as an alternative to traditional drugs, especially in individuals with medical reactions against chemical commercial drugs. Keywords: blood biomarkers, Cinnamomum camphora, Cryptosporidium parvum, cytokines, Egypt, genotoxicity, green nanoparticles, rats, Ulva fasciata.

Funder

National Research Centre

Publisher

Veterinary World

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3