New technologies applied to canine limb prostheses: A review

Author:

Arauz Paul G.1ORCID,Chiriboga Patricio1,García María-Gabriela2ORCID,Kao Imin3ORCID,Díaz Eduardo A.4ORCID

Affiliation:

1. Department of Mechanical Engineering, Universidad San Francisco de Quito, Quito, Ecuador.

2. Department of Industrial Engineering, Universidad San Francisco de Quito, Quito, Ecuador.

3. Department of Mechanical Engineering, Stony Brook University, Stony Brook, United States.

4. Department of Veterinary Medicine, Universidad San Francisco de Quito, Quito, Ecuador.

Abstract

Although only a few studies have investigated about the development of animal prosthesis, currently, there is an increasing interest in canine limb prosthesis design and its clinical application since they offer an alternative to killing the animal in extreme situations where amputating the limb is the only option. Restoring normal function of amputated canine limbs with the use of a prosthesis is challenging. However, recent advances in surgical procedures and prosthesis design technology appear promising in developing devices that closely recreate normal canine limb function. Surgical advances such as evolution of osseointegration (bone-anchored) prostheses present great promise. Likewise, modern computer-aided design and manufacturing technology, as well as novel motion analysis systems are now providing improved prosthesis designs. Advances in patient-customized prostheses have the potential to reduce the risk of implant failure. The objective of this investigation is to present a general review of the existing literature on modern surgical approaches, design and manufacturing methods, as well as biomechanical analyses so that veterinarians can make more and better-informed decisions on the development and selection of proper canine limb prosthesis. Isolated research efforts have made possible an improvement in stability, comfort, and performance of canine limb prosthesis. However, continued multidisciplinary research collaboration and teamwork among veterinarians, engineers, designers, and industry, with supporting scientific evidence, is required to better understand the development of canine limb prosthesis designs that closely replicate the normal limb function.

Funder

Universidad San Francisco de Quito

Publisher

Veterinary World

Subject

General Veterinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Global Catastrophic Biological Risks in the Post-COVID-19 World: Time to Act Is Now;OMICS: A Journal of Integrative Biology;2023-04-01

2. On the use of Force Sensitive Resistor Sensors Towards the Improvement of Comfort in Canine Limb Prostheses;2022 IEEE 31st International Symposium on Industrial Electronics (ISIE);2022-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3