Advanced molecular characterization of enteropathogenic Escherichia coli isolated from diarrheic camel neonates in Egypt

Author:

Shahein Momtaz A.1ORCID,Dapgh Amany N.1ORCID,Kamel Essam1,Ali Samah F.1,Khairy Eman A.2ORCID,Abuelhag Hussein A.2ORCID,Hakim Ashraf S.2ORCID

Affiliation:

1. Animal Health Research Institute, Agriculture Research Center, Dokki, Giza, Egypt.

2. Department of Microbiology and Immunology, National Research Centre, 33 Bohouth St., Dokki, Cairo, Egypt.

Abstract

Background and Aim: Camels are important livestock in Egypt on cultural and economic bases, but studies of etiological agents of camelid diseases are limited. The enteropathogen Escherichia coli is a cause of broad spectrum gastrointestinal infections among humans and animals, especially in developing countries. Severe infections can lead to death. The current study aimed to identify pathogenic E. coli strains that cause diarrhea in camel calves and characterize their virulence and drug resistance at a molecular level. Materials and Methods: Seventy fecal samples were collected from diarrheic neonatal camel calves in Giza Governorate during 2018-2019. Samples were cultured on a selective medium for E. coli, and positive colonies were confirmed biochemically, serotyped, and tested for antibiotic susceptibility. E. coli isolates were further confirmed through detection of the housekeeping gene, yaiO, and examined for the presence of virulence genes; traT and fimH and for genes responsible for antibiotic resistance, ampC, aadB, and mphA. The isolates in the important isolated serotype, E. coli O26, were examined for toxigenic genes and sequenced. Results: The bacteriological and biochemical examination identified 12 E. coli isolates from 70 fecal samples (17.1%). Serotyping of these isolates showed four types: O26, four isolates, 33.3%; O103, O111, three isolates each, 25%; and O45, two isolates, 16.7%. The isolates showed resistance to vancomycin (75%) and ampicillin (66.6%), but were highly susceptible to ciprofloxacin, norfloxacin, and tetracycline (100%). The structural gene, yaiO (115 bp), was amplified from all 12 E. coli isolates and traT and fimH genes were amplified from 10 and 8 isolates, respectively. Antibiotic resistance genes, ampC, mphA, and aadB, were harbored in 9 (75%), 8 (66.6%), and 5 (41.7%), respectively. Seven isolates (58.3%) were MDR. Real-time-polymerase chain reaction of the O26 isolates identified one isolate harboring vt1, two with vt2, and one isolate with neither gene. Sequencing of the isolates revealed similarities to E. coli O157 strains. Conclusion: Camels and other livestock suffer various diseases, including diarrhea often caused by microbial pathogens. Enteropathogenic E. coli serotypes were isolated from diarrheic neonatal camel calves. These isolates exhibited virulence and multiple drug resistance genes.

Publisher

Veterinary World

Subject

General Veterinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3