Possibility of long-term survival of African swine fever virus in natural conditions

Author:

Arzumanyan Hranush1,Hakobyan Sona1,Avagyan Hranush2ORCID,Izmailyan Roza1,Nersisyan Narek1,Karalyan Zaven1ORCID

Affiliation:

1. Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, Yerevan, Armenia.

2. Experimental Laboratory, Yerevan State Medical University, Yerevan, Armenia.

Abstract

Background and Aim: In modern scientific literature presents an understanding that African swine fever (ASF) ASF virus (ASFV) is remarkably stable in the environment, and carcasses of the pigs which were died after ASF, play a key role as ASFV reservoir. The aim of this study was to evaluate the possibility of the ASFV (different isolates) survival in bodies of dead animals, bones, remnants of bone marrow, residual organ matrix in natural conditions. Materials and Methods: Skeletons of ASFV infected pigs which were died and left/abandoned in forests or buried in Armenia at diverse time points and locations had been excavated and examined for the presence of ASFV genome by real-time polymerase chain reaction (PCR) assay and for infection abilities through in vitro (hemadsorption test and infection in porcine lung macrophages) as well as by intramuscular infection in healthy pigs. Results: Current exploration showed that in several samples (with different times of exposure) of excavated skeletons had been detected the presence of the virus gene (p72) using real-time PCR. However, in none of these porcine samples, infectious ASFV could be isolated. Data obtained by real-time PCR at frequent intervals indicated the presence of the virus gene (p72), especially within the case of the acute form of the disease. This can be explained by the highest levels of the virus during the latter case mentioned above. Conclusion: ASFV seems to be very sensitive to environmental temperature. The best place for ASFV long-term survival in the natural environment is bone marrow from intact big tubular bones (like femur or tibia) of buried carcasses. In artificial "graves," complete bones with not destructed bone marrow can preserve the virus gene (p72) for a very long time (more than 2 years). Infectious particles in underground conditions survive not so long: In complete bones with not affected bone marrow, possible presence of the virus for several months.

Publisher

Veterinary World

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3