Electromagnetic shielding effectiveness of needle-punched composite nonwoven fabrics with stainless steel fibres

Author:

BEYİT ALI1,ÖZEN MUSTAFA SABRI1,SANCAK ERHAN1

Affiliation:

1. Marmara University, Technology Faculty, Department of Textile Engineering, Istanbul, Türkiye

Abstract

In the study, electromagnetic shielding efficiency (EMSE) absorption and reflectivity properties of fabric produced from staple stainless-steel fibres and recycled staple polyester fibres by carding and needling technologies were investigated. The bi-component core/sheath polyester fibres at a fixed ratio of 20% in producing all nonwoven fabrics were used. The staple stainless-steel fibres and recycled staple polyester fibres were blended at 13 different ratios such as 1%, 2.5%, 5%, 7.5%, 10%, 12.5%, 15%, 17.5%, 20%, 22.5%, 25%, 27.5%, 30%. The fibre webs were formed at wool type carding machine and then the folded webs were bonded mechanically with needle punching machines. Half of the produced nonwoven composite fabrics were bonded by thermal bonding technology with oven and calender machines. As the conductive fibres were costly, the study aimed to obtain optimum shielding effectiveness with the usage of minimum conductive fibres. Electromagnetic shielding properties, absorption and reflection characteristics of needle-punched nonwoven fabrics with calendered or un-calendered were performed by coaxial transmission line method according to ASTM-D4935-10 in the frequency range of 15 MHz to 3000 MHz. It is a known fact that electromagnetic shielding effectiveness increases with the increase in the amount of conductive fibre. It was found that nonwoven fabric produced with a usage of 17.5% stainless steel fibre has at least 90% electromagnetic shielding percentage in general use with 15 dB at a frequency of 1800 MHz. Increased stainless steel fibre content in nonwoven fabrics resulted in decreased nonwoven fabric thickness and tensile strength. Such a nonwoven composite material with electromagnetic shielding property could be used for construction and building applications.

Publisher

The National Research and Development Institute for Textiles and Leather

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3