A preliminary study of printed electronics through flexography impression on flexible substrates

Author:

RODES-CARBONELL ANA M.1,FERRI JOSUÉ1,GARCIA-BREIJO EDUARDO2,BOU-BELDA EVA3

Affiliation:

1. Textile Research Institute (AITEX), Alcoy 03801, Spain

2. Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Valencia 46022, Spain

3. Department of Textile and Paper Engineering, Universitat Politècnica de València, Plaza Ferrándiz y Carbonell s/n. 03801, Alcoy, Spain

Abstract

The work is framed within Printed Electronics, an emerging technology for the manufacture of electronic products. Among the different printing methods, the roll-to-roll flexography technique is used because it allows continuous manufacturing and high productivity at low cost. Apart from the process parameters, the ink and the substrate properties are some of the variables associated with the flexographic printing. Specifically, this study investigates the ink penetration, the print uniformity, the adhesion, the fastness, and the electrical behaviour of the same conductive silver ink printed on different flexible substrates through the flexography process. In addition to polymeric and siliconized paper substrates, which are typical used in printed electronics, two substrates were also chosen for the study: woven and nonwoven fabric. Optical, scanning electronic microscope (SEM), 4-point Kelvin and colour fastness to wash and rubbing analyses have been performed. The results concluded that, regarding the conductivity behaviour, porous substrates like textiles and nonwoven fabrics without pre and post treatments do not present acceptable results, whereas polymers or silicone papers do. Nevertheless, woven and nonwoven fabrics are a suitable early option regarding colour fastness to wash instead of thin polymeric and paper substrates that tear at the wash machine. A solution for an optimal printing on textiles would be the surface substrates pre-treatment by applying different chemical compounds that increase the adhesion of the ink on the fabric

Publisher

The National Research and Development Institute for Textiles and Leather

Subject

Polymers and Plastics,General Environmental Science,General Business, Management and Accounting,Materials Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3